If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10q^2+15q=100
We move all terms to the left:
10q^2+15q-(100)=0
a = 10; b = 15; c = -100;
Δ = b2-4ac
Δ = 152-4·10·(-100)
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4225}=65$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-65}{2*10}=\frac{-80}{20} =-4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+65}{2*10}=\frac{50}{20} =2+1/2 $
| 0.5m+1.5=-0.1 | | n(n+6)=-7 | | 3=w/3−1 | | 12.7=z+9.4 | | 1/2(10x+18)-20=1/3(24x-27) | | g÷17=5 | | (X+14)+(5x+5)+(2x+17)=180 | | p=10-0.2 | | 7y^2+(4-y)^2=64 | | c/3+5=9 | | -3(7x+8)=-255 | | Y=100(1.5x)+3 | | 9x-10=82 | | 5(-3+3x)=-180 | | 10x-(2x-3)=11 | | -2(2+2x)=-20 | | 1x(.08)=30 | | 4(x=3)+5=109 | | (6x-8)+(x+15)+(7x+19)=180 | | 8y^2-8y=48 | | q+3=16 | | 7(7-4x)=217 | | Y+12=-4x | | 7(4x+3)=49 | | 2^(x)=64 | | 19+w=41 | | 61=3-8v | | -19=14m+17 | | (-2x²+2x+1)(4x²−2x)=0 | | 20/21=11/7g | | -7(6+2x)=-84 | | 3x-27=-3(x+9) |